
10 – Advanced Concepts in Processing

Francesco Leotta, Andrea Marrella

Last update : 03/05/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

Libraries

2 Interaction Design 17/18 10 - Advanced
Concepts

 When we call a Processing function, such as line(…), background(…)

etc., we are calling a function that is available in the core Processing

library.

 A library might consist of functions, variables, and objects.

 Processing makes the assumption that the core Processing Library is already
imported and there is no need to write an import statement for it.

 However, while the core library covers all the basics, for advanced

functionality we have to import specific libraries that are not assumed at

the top of your code.

import processing.core.*;

import is a keyword to indicate that we are going to make use

of a library named “processing.core”. The wildcard “.*”

indicates we want to access to everything in the library.

Built-in Libraries

3 Interaction Design 17/18 10 - Advanced
Concepts

 The full list of Processing built-in libraries is available at the following url:

 For example, the following built-in libraries are covered by Processing:

 Video: for capturing images from a camera and playing movie files.

import processing.video.*;

 Sound: for sound analysis, synthesis and playback.

import processing.sound.*;

 Serial: for sending data between Processing and an external device via serial

communication.

import processing.serial.*;

 Network: For creating client and server sketches that can communicate across the

internet.

import processing.net.*;

https://www.processing.org/reference/libraries/

https://www.processing.org/reference/libraries/

Contributed Libraries

4 Interaction Design 17/18 10 - Advanced
Concepts

 The world of third party (also known as “contributed”) libraries for Processing provide

capabilities ranging from packet sniffing, to physics simulations, to GUI controls.

 The full list of contributed libraries compatible with Processing is available at the

following url:

https://www.processing.org/reference/libraries/

https://www.processing.org/reference/libraries/

Install a Contributed Libraries

5 Interaction Design 17/18 10 - Advanced
Concepts

Strings

6 Interaction Design 17/18 10 - Advanced
Concepts

 The String class is built into the Processing environment for storing and

manipulating text.

 We have already dealt with Strings before whenever we have printed some

text to the message window or loaded an image from a file.

println("printing some text to the message window!");

PImage img = loadImage("filename.jpg");

 In order to learn the details about all the built-in variables and functions

available for Strings, Processing includes documentation in its reference:

http://www.processing.org/reference/String.html

http://www.processing.org/reference/String.html

What is a String?

7 Interaction Design 17/18 10 - Advanced
Concepts

 A String is nothing more than a list of characters in between quotes.

String sometext = "Type characters between quotes!";

 Nevertheless, this is only the data of a String. We must remember that a String

is an object with functions. Let’s see some of them!

 A first useful method is length().

 This is easy to confuse with the length property of an array.

 However, when we ask for the length of a String object, we must use the
parentheses since we are calling a function called length() rather than accessing

a property called length.

String message = "This String is 34 characters long." ;

println(message.length());

It will print on the console: “34”

UpperCase, LowerCase and Equality

8 Interaction Design 17/18 10 - Advanced
Concepts

 We can also change a String to all uppercase (or lowercase) using the
toUpperCase() or toLowerCase() functions.

String message = “CiaO”;

String uppercase = message.toUpperCase();

String lowercase = message.toLowerCase();

println(uppercase); //It will print to the console: CIAO

println(lowercase); //It will print to the console: ciao

 If we want to compare Strings (for example, in a conditional if), instead of
using == we must use the function equals(…), which returns a boolean

value that is TRUE if two strings contain the same list of characters.

if(uppercase.equals(lowercase)) {…}

 If we want to perform a comparison that is not case sensitive, we can use the
function equalsIgnoreCase(…)

Concatenation

9 Interaction Design 17/18 10 - Advanced
Concepts

 Another feature of String objects is concatenation for joining two

Strings together.

 Strings are joined with the plus (+) operator.

 The plus operator (+), of course, usually means add in the case of numbers. When

used with Strings, it means join.

String helloworld = " Hello " + " World ";

 Variables can also be brought into a String using concatenation.

int x = 10;

String message = "The value of x is: " + x;

It will print on the console: “The

value of x is 10”

Splitting Strings

10 Interaction Design 17/18 10 - Advanced
Concepts

 The split() function separates a longer String into an array of Strings,

based on a split character known as the delimiter.

 It takes two arguments, the String to be split and the delimiter.

 The delimiter can be a single character or a String.

// Splitting a String based on spaces

String word = “Ciao mamma, come stai?" ;

String[] list = split(word, “ “);

printArray(list);

// Splitting a String based on spaces

String word = “Ciao mamma, come stai?" ;

String[] list = split(word, ‘,’);

printArray(list);

The delimiters are “ “ and ‘,’

The function printArray(…)

prints the content of the array.

In the first case:

Ciao

Mamma,

Come

Stai?

In the second case:

Ciao Mamma

come stai?

Displaying Text

11 Interaction Design 17/18 10 - Advanced
Concepts

 The easiest way to display a String is to print it in the message window with
the function println(…)

 While this is valuable for debugging, it is not going to help our goal of

displaying text for a user.

 To place text on screen, we have to follow a series of simple steps.

 STEP 1: Declare an object of type PFont.

PFont f;

 STEP 2: Specify the font by referencing the name and the size of the font.

f = createFont(“Georgia”,16);

 This should be done only once in setup()

 For a list of available fonts, you can use printArray(PFont.list());

Displaying Text

12 Interaction Design 17/18 10 - Advanced
Concepts

 STEP 3: Specify the font using textFont(…)

 It takes one or two arguments, the font variable and the font size, which is optional. If

you do not include the font size, the font will be displayed at the size originally loaded.

textFont(f,16);

 STEP 4: Specify a font color using fill(…)

fill(0);

 STEP 5: Call the text(…)function to display text.

 This function takes three arguments: the text to be displayed, and the x and y

coordinate to display that text.

 By default, text is LEFT-ALIGNED

text("Mmmmm... Strings... " ,10,100);

The Complete Example

13 Interaction Design 17/18 10 - Advanced
Concepts

PFont f; // STEP 1: Declare PFont variable

void setup() {

size(200,200);

f = createFont("Georgia",16); // STEP 2: Load Font

}

void draw() {

background(255);

textFont(f,16); // STEP 3: Specify font to be used

fill(0); // STEP 4: Specify font color

text("To be or not be",10,100); // STEP 5: Display Text

}

Aligning Text

14 Interaction Design 17/18 10 - Advanced
Concepts

PFont f;

void setup() {

size(300,200);

f = createFont("Georgia",16);

}

void draw() {

background(255);

textFont(f,16);

fill(0);

textAlign(LEFT);

text("To be or not be",width/2,70);

textAlign(RIGHT);

text("To be or not be",width/2,90);

textAlign(CENTER);

text("To be or not be",width/2,120);

}

The function textAlign(…)

specifies RIGHT, LEFT, or

CENTER alignment for text .

An example of text animation

15 Interaction Design 17/18 10 - Advanced
Concepts

 Let’s say we want to create a news ticker, where text scrolls across the

bottom of the screen from left to right.

 When a news headline leaves the window, a further news reappears on the right-

hand side and scrolls again.

 If we know the x location of the beginning of the text and we know the width of that

text, we can determine when it is no longer in view.

 We can use the function textWidth(), which calculates and returns the

width of any character or text string.

An example of text animation

16 Interaction Design 17/18 10 - Advanced
Concepts

String[] headlines = {"To be or not to be:",

"that is the question",

"W.Shakespeare"};

PFont f;

float x;

int index = 0;

void setup() {

size(200,200);

f = createFont("Georgia",16);

x = width;

}

To start, we declare an array called
headlines that contains the news

to visualize. Then, we declare font

and x location variables, initializing
them in setup().

Initializing headline off-screen to
the right.

An example of text animation

17 10 - Advanced
Concepts

void draw() {

background(255);

fill(0);

textFont(f,16);

textAlign(LEFT);

text(headlines[index],x,40);

x = x-3;

float w = textWidth(headlines[index]);

if(x<-w) {

x = width;

index = index + 1;

if(index == headlines.length) {

index=0;

}

}

}

The i-th news in the array is shown.

Decrement x to simulate the
movement from right to left.

Calculate the width of the String

representing the i-th news
visualized.

To check if the text reached the left

side of the screen, we can not

simply ask: is x less than 0?

Since the text is left-aligned, when

x equals zero, it is still viewable on

screen. Instead, the text will be

invisible when x is less than 0

minus the width of the text.
When that is the case, we reset x back to the
right-hand side of the window, that is, width. If

we have visualized all the news, we reset the

index of array to show the first news.

Translating and Rotating Text

18 Interaction Design 17/18

PFont f;

String message = " this text is spinning";

float angle;

void setup() {

size(200,200);

f = createFont("Arial",20);

}

void draw() {

background(255);

fill(0);

textFont(f);

// Translate to the center

translate(width/2,height/2);

rotate(angle); // Rotate by angle

textAlign(CENTER) ;

text(message,0,0);

angle += 0.05; // Increase rotation

}

The function translate(…) moves the origin point—

(0,0)— of a specific amount within the display window.

The x parameter specifies left/right translation, the y

parameter specifies up/down translation.

Rotate the center of an

object of a specific angle.

Processing and 3D

 Processing offers an easy support to 3D

interfaces

 It can be accessed using P3D as last argument

of size() function, e.g., size(400, 400, P3D)

 Drawing in 3D requires a different point of view

on coordinates

 https://processing.org/tutorials/p3d/

https://processing.org/tutorials/p3d/

Processing and 3D

 If we want to draw a box instead of a rect, our

first instinct would be to add an additional

parameter to the rect function

 This simply does not work as we do not know the

orientation of the rect in the space

 Solution: translate(), rotate() and scale()

 This operations are combined into

mathematical structures called matrices (plural

of matrix)

 Matrix must be created and enabled after every

transformation

 At the beginning the program uses the identity

matrix for drawing

Processing and Android

 Processing offers a native support to Android

APP development

 http://android.processing.org/tutorials/index.ht

ml

 To enable Android mode click on Android into

the node selection combo and wait

 Applications can be tested using your own

smartphone or an emulator

http://android.processing.org/tutorials/index.html

Processing Android and VR

 Among the possibilities offered by processing

and Android we have a simple support for

virtual reality

 We can have VR using expensive visors (e.g.,

Oculus Rift) or using Cardboards

 http://android.processing.org/tutorials/vr_intro/i

ndex.html

http://android.processing.org/tutorials/vr_intro/index.html

Data Stream and Networking

23 10 - Advanced
Concepts

 We will see now how to use the Processing network library to create sketches

that talk to each other in real-time.

 Example of this are chat, games, instant messenger, etc.

 The communication happens in “client–server mode”, where tasks are

partitioned between the providers of a resource or service, called Server, and

service requesters, called Client.

 When you make a request on Google, you act as a client, while Google is the server

that provides a response.

 For multiuser applications in Processing where we need near real-time
communication, we need a synchronous connection with a Socket.

Server

Client

#N

Client

#1
…

Creating a Server
 In order to start working with sockets, we need first to build a server.

 The server job will be to:

 Open connections for clients;

 Respond to their requests.

 To create a server, we must first import the library and create an instance of a

Server object.

import processing.net.* ;

Server server;

 The server is initialized via the constructor, which takes two arguments: the
keyword this (reference to this sketch; if the server is on a remote location,

we must use is IP address) and an integer value for a port number.

server = new Server(this, 5204);

24 Interaction Design 17/18 10 - Advanced
Concepts

Port numbers range from 0 to 65,536.

However, ports 0 through 1,024 are

usually reserved for common
services, so it is best to avoid those.

Creating a Server
 The server starts and waits for connections as soon as it is created. It can be

closed at any time by calling the stop() function.

server.stop();

 At this point, we can find out if a new client has connected to our server by
implementing the built-in function serverEvent(), which requires two

arguments:

 a server object (the one generating the event)

 a client object (that has connected). We might use this function, for example, to

retrieve the IP address of the connected client.

// The serverEvent function is called if a new client

connects

void serverEvent(Server server, Client client) {

println("A new client has connected: " + client.ip());

}

25 Interaction Design 17/18 10 - Advanced
Concepts

Creating a Server
 When a client sends a message (after having connected), a serverEvent()

is not generated.

 Instead, we must use the available() function to determine if there is a new

message from any client available to be read.

 If there is, a reference to the client broadcasting the method is returned and we
can read the content using the readString() function.

 If nothing is available, the function will return the value null, meaning no

value (or no client object exists).

void draw() {

// If a client is available, we will find out.

// If there is no client, it will be "null"

Client someClient = server.available();

if (someClient! = null) {

println("Client says: " + SomeClient.readString());

}

}

26 Interaction Design 17/18 10 - Advanced
Concepts

Creating a Server
 The function readString() is useful in applications where text information is

sent across the network.

 If the data should be treated differently, for instance, as a number or an image,
other read() methods can be called.

 A server can also send messages out to clients, and this is done with the
write()function.

server.write("Great, thanks for the message!\n");

 It is often a good idea to send a newline character ‘\n’ at the end of your

messages to recognize incoming/outgoing messages.

27 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple server
import processing.net.*; // Import the net libraries

Server server; // Declare a server

float newMessageColor = 255; // Used to indicate a new message has arrived

String incomingMessage = "" ;

void setup() {

size(400,200);

server = new Server(this, 5204); // Create the Server on port 5204

}

void draw() {

background(newMessageColor);

newMessageColor += 0.3; //newMessageColor fades to white over time

newMessageColor = constrain(newMessageColor,0,255);

textAlign(CENTER);

fill(255);

28 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple server
text(incomingMessage,width/2,height/2);

Client client = server.available(); // If there is no client, it will be "null"

if (client != null) {// We should only proceed if the client is not null

incomingMessage = client.readString(); // Receive the message

incomingMessage = incomingMessage.trim();

if(incomingMessage.equalsIgnoreCase("hello") ||

incomingMessage.equalsIgnoreCase("hi")) {

server.write("Hello my friend!\n");

}

else if(incomingMessage.equalsIgnoreCase("how are you")) {

server.write("Fine, thanks!\n");

}

else if(incomingMessage.equalsIgnoreCase("i am tired")) {

server.write("Well, you can drink coffeee!\n");

}

else { server.write("I am sorry, but my vocabulary is very limited...\n"); }

29 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple server
// Reset newMessageColor to black

newMessageColor = 0;

}

}

// The serverEvent function is called whenever a new client connects.

void serverEvent(Server server, Client client) {

incomingMessage = " A new client has connected: " + client.ip();

println(incomingMessage);

// Reset newMessageColor to black

newMessageColor = 0;

}

30 Interaction Design 17/18 10 - Advanced
Concepts

Creating a Client
 Once the server is running, we can create a client that connects to the server.

 We start off the same way we did with a server, importing the net library and

declaring an instance of a Client object.

import processing.net.*;

Client client;

 The client constructor requires three arguments: “this”, referring again to this

sketch, the IP address we want to connect to (as a String), and the port

number (as an integer).

 If the server is running on a different computer than the client, you will

need to know the IP address of that server computer.

 In addition, if there is no server running at the specified IP and port, the

Processing sketch will give the error message: “ java.net.ConnectException:

Connection refused ” meaning either the server rejected the client or that there

is no server.

31 Interaction Design 17/18 10 - Advanced
Concepts

Creating a Client

 Sending to the server is easy using the write() function.

client.write("Hello!");

 Reading messages from the server is done with the read()function. To read

the entire message as a String, readString()is used.

 In this case, we use the function readStringUntil() to guarantee the

reading of the entire string until the line breaks.

 Before we can even contemplate reading from the server, we must be sure
there is something to read. The clientEvent() whenever there is data

avalaible to read.

if (client.available() > 0) {

String message = client.readString();

}

32 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple client
import processing.net.*;

Client client;

float newMessageColor = 0; // Used to indicate a new message

String messageFromServer = " " ; // A String to hold whatever the server says

String typing = " " ; // A String to hold what the user types

void setup() {

size(400,200);

client = new Client(this, "127.0.0.1", 5204); // Create the Client

}

void draw() {

background(255);

fill(newMessageColor); // Display message from server

textAlign(CENTER);

text(messageFromServer,width/2,140);

33 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple client
// Fade message from server to white

newMessageColor += 1;

newMessageColor = constrain(newMessageColor,0,255);

// Display Instructions

fill(0);

text("Type text and hit return to send to server. ",width/2,60);

// Display text typed by user

fill(0);

text(typing,width/2,80);

}

34 Interaction Design 17/18 10 - Advanced
Concepts

Example of a simple client
void clientEvent(Client client) {

String msg = client.readStringUntil('\n');

println(msg);

if (msg != null) {

messageFromServer = msg; // Read it as a String

newMessageColor = 0; // Set brightness to 0

}

}

void keyPressed() {

if (key == '\n') {

// If the return key is pressed, save the String and clear it

// When the user hits enter, write the sentence out to the Server

client.write(typing);

typing = " " ;

} else {

typing = typing + key; }

}

35 Interaction Design 17/18 10 - Advanced
Concepts

Video, Sound and more on Images

36 Interaction Design 17/18 10 - Advanced
Concepts

 More on 2D images

 https://processing.org/tutorials/pixels/

 3D images

 https://processing.org/tutorials/p3d/

 Video

 https://processing.org/tutorials/video/

 Sound

 https://processing.org/tutorials/sound/

 Interesting Examples:

 https://processing.org/examples/

https://processing.org/tutorials/pixels/
https://processing.org/tutorials/p3d/
https://processing.org/tutorials/video/
https://processing.org/tutorials/sound/
https://processing.org/examples/

Reference Book

37 Interaction Design 17/18 10 - Advanced
Concepts

